
Shear Viscosity of the “semi”-QGP
1. Deconfinement and Polyakov loops: possible phase transitions 

2. SU(∞) on a small sphere (Sundborg ‘99, Aharony et al ’03, ‘05): 
        Matrix model; Gross-Witten point; semi-QGP

3. Lattice: pressure for SU(N) 
     With quarks: flavor independence.  Without quarks: N = 3 like N = ∞ 
     Is the QCD coupling big at Tc?  Maybe not.

4. Renormalized Polyakov Loops & the semi-QGP

5. Shear viscosity of the semi-QGP

    For heavy ions, is LHC like RHIC? 

                          Strong-QGP, N = 4 SUSY: yes.  
                                      Semi-QGP, no.



1. Some possible deconfining transitions



Polyakov loops & deconfinement
Polyakov loop: order parameter for deconfinement in SU(N):

Ordinary magnetization:
     <s>≠ 0 at low T,  <s>=0 at high T. 

Deconfinement: Polyakov loop “flipped”,
Global Z(N) symmetry: broken at high T,
                                       restored at low T.

Classify possible deconfining transitions by change in < loop >.  
Assume overall normalization of loop physical: 
Quarks act like background Z(N) field.

Consider order parameter, not pressure, p(T); pressure always continuous.

τ ↑! =
1

N
tr P exp

(

ig

∫ 1/T

0

A0 dτ

)

<s>↑

T→

〈!〉 → 1 , T → ∞



T→

1.→

Tc↑

〈!〉 ↑

Logically possible, does not appear to arise in any context.  (Lattice, analytical...)
General expectation before RHIC.

One possibility
Transition from confined phase to “complete” Quark-Gluon Plasma (QGP)
Complete QGP: loop near 1, ≈ perturbative.
Transition strongly first order.  Effect of quarks weak.

confined “complete” QGP



1.→

〈!〉 ↑

Tc ?
T→

Another possibility
Many quarks, strong background field.
Loop increases gradually, probably no deconfining phase transition.  

Probably true for large number of flavors, completely wash out deconfinement.
Also: perhaps no chiral transition?  



QCD?

〈!〉 ↑

1.→

Tc↑
T→

 Hadronic →←     “semi”-QGP     →←Complete QGP→   

Analytic solution, and lattice, show: even with dynamical quarks, three regimes:
Hadronic, <loop> ~ 0.  
“Semi”-QGP: <loop> nonzero, but not near one.  Matrix model.
Complete QGP: <loop> near one.  Usual “perturbative” regime (resummed!)



N = 4 SU(∞)

×

AdS/CFT: Can define <loop> = 1 at T = 0 (Polyakov-Maldacena, + scalars)

Constant at T ≠ 0 (like pressure/T4) : value, vs g2 N?  Not a deconfining transition.

〈!〉 ↑

1.→

T→



2. Deconfinement for SU(∞) on a small sphere



SU(∞) on a small sphere: Hagedorn temperature
Sundborg, hep-th/9908001
AMMPV: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk,
                                                                                                   hep-th/0310285 & 0502149 

Consider SU(N) on a very small sphere: radius R, with g2(R) << 1.
(Sphere because constant modes simple, spherically symmetric)

At N = ∞, can have a phase transition even in a finite volume.  

When g2 = 0: by counting gauge singlets, find a Hagedorn temperature, TH :

ρ(E) ∼ exp(E/TH) , E → ∞

At N = ∞,  Hagedorn temperature is precisely defined, calculable at g2 = 0

TH =
1

log(2 +
√

3)

1

R
, g2 = 0.



SU(∞) on a small sphere: effective theory
Construct effective theory for low energy (constant) modes, 

by integrating out high energy modes, with momenta ~ 1/R:

Consider (thermal) Wilson line:

L is gauge dependent, 

Traces of moments gauge invariant, 

!j =
1

N
tr L

j , j = 1 . . . (N − 1)

Effective theory for lj: compute free energy in constant background A0 field:
Q = diagonal matrix.

L → Ω(1/T )† L Ω(0)

L = P exp

(

ig

∫ 1/T

0

A0 dτ

)

A0 =

T

g
Q , L = e

iQ



SU(∞) on a small sphere & the Polyakov loop
When g2 = 0:

At the Hagedorn temperature, TH , only the first mode, l1, is unstable; all other 
modes are stable.  Concentrate on that mode, l ≡ l1.

Vandermonde determinant in measure for constant mode gives “Vdm potential”:

Veff = N
2
(

m
2

!
2
1 + VVdm + . . .

)

; m
2
∼ T

2
H − T

2

VVdm = −
1

2
log (2 (1 − !)) +

1

4
, ! ≥

1

2

VVdm = + !2 , ! <
1

2

Vdm potential has discontinuity of third order at l = 1/2.
Gross & Witten ’81; Kogut, Snow & Stone ’82....
Sundborg, ’99....AMMPV ’03 & ‘05
Dumitru, Hatta, Lenaghan, Orginos & RDP, hep-th/0311223 = DHLOP
Dumitru, Lenaghan & RDP, hep-ph/0410294.
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Deconfinement on a small sphere

Have deconfining phase transition when m2 = 0: first order, < l > = 1/2 at Tc = TH.
Obvious from potentials above and below Tc:

m2 = -.1, deconfined phase =>

<= m2 = +.1, confined phase



Gross-Witten point

At transition, order parameter <loop> jumps from 0 to 1/2.  Latent heat nonzero.
DLP: masses vanish, asymmetrically: “critical” 1st order transition: “GW point”.
At m2 = 0, <loop> jumps because of 3rd order discontinuity in Vdm potential
GW point like tricritical point in extended phase diagram.
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1→

T→
Tc↑

〈!〉 ↑ 1/2→

←  Confined   →←    semi-QGP →←Complete QGP→   
Semi-QGP on a small sphere

Veff = Veff (g2 = 0) − c3 g4
(

!2
)2

c3 > 0.

AMMPV ‘05: calculate free energy with Q ≠ 0 to two loop order at small R
c3 > 0 ⇒  Tc = TH - O(g4).  Deconfinement first order, below TH 

Boundary btwn complete and semi-QGP not precise; <loop>  → 1 by T ~ # Tc?  
To higher order in g2 :



3. Lattice: pressure. N = 3 like N = ∞?

Maybe αs is not so big at Tc



Lattice: pressure & “flavor independence”

  p(T)          
pideal(T)↑

T/Tc→

←1.0

Pure SU(3): weakly 1st order
QCD: and 2+1 flavors: crossover
Bielefeld: properly scaled,  ≈ universal pressure

p

pideal

(

T

Tc

)

≈ const.

← QCD:
2+1 flavors

Tc↑



 Lattice: SU(3) glue, no quarks 
More sensitive than pressure: (e-3p)/T4, e = energy density, p = pressure
Bielefeld, hep-lat/9602007.  Nt = # time steps: 6, 8 near continuum limit?
Pressure: sum of ideal gas, T4, plus T2 , then “MIT bag constant”,  T0.

←(Ls)3 x Nt: 

Ls = # spatial lattice spacings

Nt = # time steps

Tc↑ 4 Tc↑

e − 3p

T 4
↑

<-1.1 Tc

T/Tc→

p(T ) ∼ #
(

T 4
− #′ T 2 + . . .

)

←

1

T 2
:



0.8 1 1.2 1.4 1.6 1.8
T/Tc

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 !
/"

4

N=8, 83x5
N=3, 203x5
N=3, 323x6, Boyd et al.
N=4, 163x5

Lattice: SU(3) close to SU(∞)?
Bringoltz & Teper, hep-lat/0506034 & 0508021:
SU(N), no quarks, N= 3, 4, 6, 8, 10, 12.
Deconfining transition first order, latent heat ~ N2.
Hagedorn temperature TH ~ 1.116(9) Tc for N = ∞ 

e − 3p

N2 T 4
∼ const.

e − 3p

N2 T 4
↑

T/Tc→
Tc↑
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 Maybe αs is not so big at Tc

Laine & Schröder, hep-ph/0503061 & 0603048

Tc ~ ΛMS ~ 200 MeV.  But αseff(T) ~ αseff(2 π T) ~ 0.3 at  Tc: not so big

Two loop calculation: grey band uncertainty from changing scale by factor 2.

α
eff
s

(T ) ↑

T/Λ
MS

→

α
eff
s

(Tc) ≈ 0.3



Perturbative resummation of the pressure

p/T4↑

←ideal gas

“Helsinki” resummation: Di Renzo, Laine, Schröder, Torrero, 0808.0557

Now to 4 loop, ~ g6.  Works to ~ 3 Tc, fails below. 
Why, if αseff(Tc) is not so big?    Perhaps a semi-QGP near Tc?

T/Λ
MS

→

Leff
=

1

2
trG

2
ij + tr |DiA0|

2
+ m

2
D trA

2
0 + κ trA

4
0

Grey: resummed 
          pert.theory.  
Red: lattice.



4. Renormalized Polyakov loops & semi-QGP



Renormalized loops
Polyakov ’80, Dotsenko & Vergeles ‘81...DHLOP ’03...
Gupta, Hubner & Kaczmarek 0711.2251 = GHK

Bare loop UV divergent.  At one loop  =>
Like mass ren. of heavy quark.  In 3+1 dim.’s, linear div.
Vanishes with dimensional regularization, but not on the lattice:

Loop in representation R, Casimir CR.  
1/(a T) = # time steps, Nt.  Renormalized loop:

Can choose

GHK: find approximate Casimir scaling:
Like cusp anomalous dimension. ZR(g2) ≈ Z(g2)CR

!bare
R = ZR(g2)Nt !renR

〈!〉 → 1 , T → ∞

〈!R〉 − 1 ∼ #
CRg2

T

∫ 1/a d3k

k2
= #

(

CR g2 + #′g4 + . . .
) 1

aT



Zero point energy & renormalized loops
Renormalization valid for arbitrary Wilson loops:

W = tr P e
ig

∮
Aµdxµ

; Wbare = Zdiv Wren

Two ambiguities:

Zdiv = eE0L
Z0 Z(g2

. . .)L/a ; Wren → e−E0L
Z

−1

0 Wren

Overall scale trivial: Z0  = 1 by requiring < loop > → 1 as T →∞.

E0 = ground state energy for potential from Wilson loop:  E0 = # √σ.  # ?

E0 : can define = 0 order by order in perturbation theory with any regulator
     (Obvious with dimensional reg..  Also true with higher derivatives...)
     E0 = 0 also in string model: Nambu-Goto plus extrinsic curvature terms...

Lattice provides non-perturbative way to define E0 = 0.  Still, its a choice...

T = 0 potential with dynamical quarks: can define energy for string breaking?



Sign of the integral is negative; like subtracting 1/k2 propagator.

Gava & Jengo ’81:
Renormalized loops approach unity from above.

Can compute perturbatively, with dimensional regularization.
Just fold Debye mass, mD , into propagator for A0:

〈!renR 〉 − 1 ∼ (+)
CR

N

(g2 N)3/2

8π
√

3

Renormalized loops at high T

〈!renR 〉 − 1 ∼ (−)
CR g2

T

∫

d3k
1

k2 + m2
D

∼ (−)
CR g2

T
(−)

√

m2
D



Lattice: ren.’d triplet loop, pure SU(3)
GHK:  Lattice SU(3), no quarks.  Two ways of getting ren’d loop agree.
<triplet loop> ~ 1/2 at Tc+!  N=3 close to Gross-Witten point?
<adjoint loop> ~ 0.01 just below Tc . Only natural in matrix model.
semi-QGP: from (exactly) Tc+ to 2 - 4 Tc (?).   <loop> ~ constant above 4 Tc.
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 Lattice: renormalized loop with quarks
Cheng et al, 0710.0354: ~ QCD, 2+1 flavors.  Tc ~ 190 MeV, crossover.
<loop>: nonzero from ~ 0.8 Tc; ~ 0.3 at Tc; ~ 1.0 at 2 Tc.
Semi-QGP from ~ 0.8 Tc (below Tc) to ~ 2-3 Tc (?). <loop> small at Tc .
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4. Shear viscosity of the semi-QGP



 Semi-QGP in weak coupling
Hidaka & RDP 0803.0453.  Semi-classical expansion of the semi-QGP:

Aµ = Acl
µ + Bµ , Acl

0 = Q/g .

Q ≠ 0: just like semi-classical calc. of ‘t Hooft loop.  Q = Qa , diagonal matrix.
Work at large N, large Nf, use double line notation.  (Finite N ok, messy.)

iDcl
0 = p0 + Qa

= pa

0

iDcl
0 = p0 + Qa

− Qb
= pab

0

Perturbation theory in Bμ’s same as Q = 0, but with “shifted” p0’s.
Amplitudes in real time: p0a → i ω, etc.  Furuuchi, hep-th/0510056

Q (imaginary) chemical potential 
for (diagonal) color charge.
e.g., for quarks:

ñ(E − iQa) =
1

e(E−iQa)/T + 1

a

a
b



Z(N) interfaces = ‘t Hooft loop 
Z(N) interface: Z(N) “twist” in z-direction. Atr = transverse area.

tN = diag(1N-1, -N+1).  A0 ~ “coordinate” q(z).
Leff = classical + 1 loop potential, for constant A0

〈L〉 = 1

〈L〉 = e
2πi/N

1

z

Bhattacharya, Gocksch, Korthals-Altes & RDP, hep-ph/9205231
Z(N) interface = ‘t Hooft loop: Korthals-Altes, Kovner & Stephanov, hep-ph/9909516
Corrections ~ g3: Giovannangeli & Korthals-Altes hep-ph/0412322
                    ~ g4:  Korthals-Altes, Laine, Romatschke 08...

Leff =
4π2(N − 1)T 3

√

3g2N
Atr

∫

dz

(

(

dq

dz

)2

+ q2(1 − q)2
)

Acl
0 =

2πT

gN
q(z) tN



 How color evaporates in the semi-QGP
AMMPV: simple trick.  

L = ei Q/T = Wilson line.  Obtain expressions in terms of moments of L, Lj.  

We don’t know (yet) effective theory for Q’s. So we guess.

Take first moment, l = <loop> = < tr L>/N, from lattice for N = 3.
For higher moments, given l, assume either: 1. Gross-Witten, or 2. step function.

L ~ propagator of infinitely heavy (test) quark.
In this semi-cl. expansion, for colored fields of any momentum and mass,
As l→0, all quarks suppressed ~ l ; all gluons, ~ l2 : universal color evaporation

Smells right: all colored fields should evaporate as <loop> → 0.

tr
1

e(E−iQa)/T
− 1

= tr

∞∑

j=1

e
−j(E−iQa)/T

=

∞∑

j=1

e
−jE/T

tr L
j



 Shear viscosity in the semi-QGP

η

T 3
=

#

g4 log(c/g)
R(") ; R(" → 0) ∼ "2

Shear viscosity, η, in the complete QGP:
Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.
Generalize to Q ≠ 0: Boltzmann equation in background field.

                  

“Strong” QGP, large coupling   S ~ 1, C ~ (coupling)2 >> 1.
  N = 4 SU(N), g2 N = N = ∞: η/s = 1/4π .  Kovtun, Son & Starinets hep-th/0405231

“Semi” QGP: small loop at moderate coupling:
                       Pure glue: S ~ <loop>2, C ~ g4 <loop>2

                       With quarks: S ~ <loop>, C ~ g4

To leading log order: # from AMY, constant “c” beyond leading log

η =

S2

C
S = source, C = collision term.  Two ways of getting small η:

Both: η ~ <loop>2



 Counting powers of <loop> = l → 0

X
S ∼ !

X
S ∼ !

2

∼ e
+iQa/T

∼ e
−iQa/T

C ∼ !
2

C ∼ 1



 Small shear viscosity from color evaporation
R = ratio of shear viscosity in semi-QGP/complete-QGP at same g, T.
Two different eigenvalue distributions give very similar results!

When <loop> ~ 0.3, R ~ 0.3.

! →

R(!) ↑

∼ !
2
→

←Cusp near 1:
smoothed out
by Q ~ g T?

Nf = 0 →

← Nf = N



 Shear viscosity/entropy
Leading log shear viscosity/lattice entropy.  αs(Tc) ~ 0.3.
Large increase from Tc to 2 Tc.  Clearly need results beyond leading log.  
Also need to include: quarks and gluons below Tc, hadrons above Tc.  Not easy.
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Strong- vs. Semi-QGP at the LHC

η/s ↑ He

N2

H2O

RHIC?→
Tc↑ 2 Tc↑

Lacey, Ajitnand, Alexander, Chung, 
Holzman, Issah, Taranenko, 
Danielewicz & Stocker, 
nucl-ex/0609025  ↓

At RHIC,  η/s ~ 0.1 ± 0.1
Luzum & Romatschke, 0804.4015

Close to N = 4 SU(∞), η/s =1/(4 π).

Strong-QGP: in N = 4 SU(∞),
add scalar potential to fit lattice pressure
But η/s remains = 1/4π !
Evans & Threlfall, 0805.0956
Gubser & Nellore, 0804.0434
Gursoy, Kiritsis, Mazzanti & Nitti 0804.0899
So LHC nearly ideal, like RHIC.

Semi-QGP, and non-relativistic systems →
Large change in η/s from Tc to 2 Tc.
At early times, LHC viscous,
                         unlike RHIC


